
05-02-2011 C++ Interop 1

Mono C++ Interop



05-02-2011 C++ Interop 2

What is it?
● Project started by Alex Corrado on GSOC 2010

– Development ongoing

● Using c++ libraries without having to go through C

● Extending by subclassing

● Opening new areas
– QT comes to mind



05-02-2011 C++ Interop 3

What Mono supports now
● For C, Pinvoke

– Simple

– Not object oriented

● For C++, COM
– COM support is all about invoking virtual methods

– Vtable layout is easy, well known, and doesn't require 
mangling

– Pointers created in native



05-02-2011 C++ Interop 4

What do we want to do?
● Calling C++ non-virtual and static methods

● Instantiating classes in C#

● Subclassing

● overriding



05-02-2011 C++ Interop 5

The problems
● Virtual calls are easy

– Vtable layout is known

– Can be mapped with a C# interface

– Doesn't require mangling

● Everything else is hard
– Name mangling

– Class instantiating on the C# side

– Subclassing

– Overriding methods



05-02-2011 C++ Interop 6

Name mangling
● _ZN12QApplication4execEv = Qapplication::exec()

● Each compiler does mangling differently
– GCC has two versions

– MSVC

● Fortunately, there's a paper detailing the different 
mangling strategies

● GCC and c++filt source

● This part is mostly done for GCC and MSVC

● Need to know the exact signature for every method
– C# types are not enough



05-02-2011 C++ Interop 7

Class instantiating
● The easy way is to use a C++-created pointer

● Doing it in C# requires
– Knowing the size native expects it to be

– A way to support callbacks from C++

● Size requires knowing not only how big the class is, 
but also how big all the base classes are

– Requires an exact map of all the C++ classes

● Callbacks also require deep knowledge of the class

● Same for subclassing, overrides, etc



05-02-2011 C++ Interop 8



05-02-2011 C++ Interop 9

Data is what we need...

● C++ interop requires defining classes, structs and 
interfaces in C# with full type information

● Parsing C++ headers is a pain!

● GCC-XML + Binding generator to the rescue!
<Constructor id="_6455" name="QPushButton" explicit="1"             
             context="_1718" access="public" 
             mangled="_ZN11QPushButtonC1EP7QWidget *INTERNAL* " 
             demangled="QPushButton::QPushButton(QWidget*)"  
             location="f29:66" file="f29" line="66" extern="1">

      <Argument name="parent" type="_2824" location="f29:66" 
                file="f29" line="66" default="0"/>

</Constructor>



05-02-2011 C++ Interop 10

... to generate C# bindings
QtGui  = new CppLibrary ("QtGui", new ItaniumAbi ());

public class QPushButton : QabstractButton {
  
  static IQPushButton impl = Qt.Libs.QtGui.GetClass<IQPushButton, 
     _QPushButton, QPushButton> ("QpushButton");

  public QPushButton (QWidget parent) : base(impl.TypeInfo) {

     Native = impl.Alloc (this);

 impl.QPushButton (Native, parent);
  }

[...]

public interface IQPushButton : ICppClassOverridable<QPushButton> {

   [Constructor]
   void QPushButton (CppInstancePtr @this, QWidget parent);



05-02-2011 C++ Interop 11



05-02-2011 C++ Interop 12

How does it work
● Library created at runtime via Reflection.Emit from 

the binding declarations

● An interface represents the actual C++ class

● It inherits from one of
– ICppClass

● native pointer, static or instance methods
– ICppClassInstantiatable

● C# instantiated object, 
– ICppClassOverridable<T>

● C# instantiated
● Virtual methods can be overriden



05-02-2011 C++ Interop 13

How does it work
● Types are tagged with [MangleAs]

– C# type information is not enough to figure out the 
mangled name

● Methods are tagged with [Constructor], [Destructor], 
[Virtual]

● DllImport == CppLibrary via GetClass call

● ItaniumAbi for GCC, MsVcAbi for Windows
– Detect at runtime from environment

● Or even checking the library exports



05-02-2011 C++ Interop 14

How does it work
● CppType

– Type abstraction

– Primitives, classes, structs, enums, unions, modifiers

● CppTypeInfo
– Type memory layout

– Constructed at runtime, passed to base classes to 
layout everything correctly

– Information about vtable slots, offsets for fields



05-02-2011 C++ Interop 15

From header to heaven
● Generate a complete description with gcc-xml

● Parse the xml and generate C# bindings

● When you run:
– bindings are processed, assembly is emitted

– contains DllImports with compiler-specific mangling

– Information about memory layouts for instances

– You get an instance that C++ likes

● Our objective is to reduce manual code to 0
– And we're almost there! But not quite...



05-02-2011 C++ Interop 16

Current status



05-02-2011 C++ Interop 17

Current status
● Generator is working

● Framework is in place
– Currently blowing up, sorry!

● Native size calculations are probably a bit off
● Polymorphism is... complicated

● Some support for templates... but they're a pain

● More mangling support is needed

● Generated bindings not quite right yet, need tweaks



05-02-2011 C++ Interop 18

That's it!
● Come help us!
● github.com/andreiagaita/cppinterop

● github.com/nirvanai/cppinterop

● shana@spoiledcat.net 


